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Abstract

In the present work, a fundamental solution for transient 3D dynamic piezoelectricity is derived. The theoretical

basics are reviewed with special attention to the case of transversely isotropic piezoelectric materials of the crystal
class 6 mm. Numerical results concerning both convex and non-convex slowness surfaces are presented, where
di�erent singularities, present only in anisotropic materials, are analysed. # 1999 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Piezoelectric materials (PEM) have been used in many engineering ®elds and applications. Perhaps,
the most widely spread traditional application of piezoelectric continua is the generation of ultrasonic
waves. In the last few years, PEM have also been increasingly applied in the active vibration control of
so-called `smart structures'.

As a consequence of such applications with resulting complex devices, resort must be made to
numerical methods. The Boundary Element Method (BEM) has a successful history as a numerical tool
to treat dynamic problems as well as local problems such as defects or concentrated loads.

Due to BEM's special qualities, several authors have dedicated their attention to the derivation of
fundamental solutions (the basis of BEM) for the case of piezoelectricity. Notwithstanding, such
solutions are mathematically di�cult to model as PEM have two qualities: anisotropy and electro-
mechanical coupling.

Within the framework of time dependent 3D fundamental solutions for PEM there are basically two
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works published in the recent years: the formulation presented in Norris (1994) and the one from
Khutoryansky and Sosa (1995a, b). The paper from Norris contains a valuable review on the subject of
fundamental solutions for anisotropic solids.

The approach from Khutoryansky and Sosa is based on the representation of the solution over the
unit sphere. Moreover, their results went further as the solution was reduced to alternative integrals over
a surface (slowness surface) and line integrals.

The idea of representing the fundamental solution over such a surface for the case of aelotropic
elastodynamics goes back to Burridge (1967). Actually, this integral formulation over the slowness
surface is known as the Hergloz±Petrowski formula. The books of John (1955) and Gelfand and Shilov
(1964) give a good description of the ideas that lead to these formulas. By using the slowness surfaces, a
great deal of simpli®cation can be achieved, namely the possibility of a line integral representation
(Du�, 1977).

The Hergloz±Petrowski formulas are, as noted by Payton (1983), specially suitable in analysing the
displacement near the wave front, i.e., the singularities of the fundamental solution. The aforementioned
formulas give an explicit expression for the singular part, with no need of any integration.

Contrary to isotropic materials, anisotropy poses a number of di�culties due to the increasing
number of singularities of di�erent types. Therefore, it is not surprising that available results for general
anisotropy are until now not available. According to Du� (1960) the number of wave fronts in a
particular direction in the most anisotropic medium can be as high as 75. This number is even higher
when piezoelectricity is present since the slowness surface is raised in degree. For the quasi-electrostatic
piezoelectric case, the slowness surface is of degree 8, resulting at most 196 wave fronts (see Salmon,
1927; Du�, 1960).

The results obtained from Burridge and the corresponding generalization for PEM can be
theoretically applied to any degree of anisotropy. The implementation is, however, rather cumbersome
due to the resulting complexity of the slowness surfaces. On the other hand, few exact surfaces can be
found in the literature on particular piezoelectric materials (Dieulesaint and Royer, 1980). For materials
with arbitrary piezoelectricity, numerical calculations are necessary. A computational method for
determining the slowness surfaces can be found in Strashilov and Gentchev (1987).

The aim of this article is to investigate the potentialities of the Hergloz±Petrowski formulas (with use
of a line integral representation) for the case of transversely isotropic piezoelectric materials. The
presented numerical results concern both convex and non-convex slowness surfaces, where non-convex
slowness surfaces imply a number of interesting physical phenomena as cusps and conical points on the
wave surface, resulting in di�erent types of wave front singularities.

2. Mathematical preliminaries

Three-dimensional piezoelectricity is governed by a set of four partial di�erential equations coupling
the displacement u and the electric potential f:

Cijkluk,lj � ekijf,kj � fi � r �ui

eikluk,li ÿ eikf,ki � q �1�

where Cijkl, eijk and eij denote the elastic, piezoelectric and dielectric material constants, respectively. f, r
and q stand for the body force per unit of volume, the mass density and the electric charge. Repeated
indices are dummy indices (1 to 3 for lower case and 1 to 4 for upper case).

A detailed derivation of the fundamental solution outlined here for eqn (1) can be found in
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Khutoryansky and Sosa (1995a, b). At ®rst, an unbounded piezoelectric solid is subjected to two
independent states of an impulsive unitary load applied at the source point x, i.e.,(

f � d�t�d�xÿ x�ej
q � 0

(
f � 0

q � ÿd�t�d�xÿ x� �2�

with ej specifying the direction of the applied force. For x � 0, the loading of eqn (2) yields for eqn (1)
the following di�erential equation,

L�r, @ t �U�x, t� � d�t�d�x�I �3�
where L�r, @ t� represents the di�erential operator,

L�r, @ t � �





r@2t 0

0 0






ÿ





 A a

aT ÿa






 �4�

with Aik � Cijkl@=@xj@=@xl, ai � ekij@=@xk@=@xj and a � eik@=@xi@=@xk� U stands for the 4� 4 symmetric
Green's tensor with the following structure

U �





Uij Ui4

U4j U44






: �5�

Uij and U4j are the displacement (in the i-direction) and electric potential, respectively, at the observer
point x due to an impulsive force applied at x in the j direction. While Ui4 and U44 represent the
displacement (in the i-direction) and electric potential, respectively, for a point charge applied at x.

The plane wave transform is now used, where d�x� and U�x, t� are represented in terms of integrals
over the unit sphere jnj � 1 as,

U�x, t� �
�
jnj�1

V�n, w, t� dO�n� d�x� � ÿ 1

8p2
r2

�
jnj�1

d�w� dO�n� w � n � x: �6�

A column of the transformed tensor V�n, w, t� can be represented as a four-dimensional column vector
�v, f�. Substituting eqn (6) into eqn (3) and reducing the resulting coupled system of partial di�erential
equations in v and f to a di�erential equation in v, one obtains

rÈv ÿ Bv 00 � ÿ 1

8p2
d�t�d 00�w�F �7�

where B�n� � A � �a
 a�=a, F�n� � iM � a=ad4M and iM � �d1M, d2M, d3M�. Using Duhamel's principle
one can rewrite eqn (7) for t > 0 as

rÈv ÿ Bv 00 � 0 �8�
with the initial conditions,

v�n, w, 0� � 0 Çv�n, w, 0� � ÿ 1

8p2r
d 00�w�F�n�: �9�

Substituting a trial solution in the form of a plane wave v � Ag�n � xÿ lt�, with polarization A and
phase velocity l, in eqn (8) results in
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N�n, l�A � 0 �10�
with N�n, l� � �rl21 ÿ B�. Eqn (10) shows that the polarization A is an eigenvector of the tensor B�n�
with the eigenvalue g � rl2. As noted by Khutoryansky and Sosa (1995a), the tensor B is bounded,
symmetric and positive de®nite. Moreover, its three eigenvalues are real positive numbers, upper and
lower bounded with respect to n. li �

���������
gi=r
p

, l3�i � ÿli are the real roots of the characteristic equation
(also known as the secular equation) det N�n, l� � 0. Furthermore, the three eigenvectors A�i �

corresponding to the eigenvalues gi form an orthonormal set

X3
i�1

A�i��n� 
 A�i��n0� � I

since the tensor B�n� is symmetric.
A solution of eqn (8) with the initial conditions (9) can be derived by making use of the ®rst term in

eqn (6) and assuming some results present in Khutoryansky and Sosa (1995a) like

UiM�x, t� � ÿH�t�
4p2

@

@ t

�
jnj�1

X3
i�1

d�y� res
n
lÿ2Nÿ1ij �n, l�

o
l�li

FjM�n� dO�n� �11�

U4M�x, t� � ÿH�t�
4p2

@

@t

�
jnj�1

X3
i�1

d�y� res
n
lÿ2Nÿ1ij �n, l�

o
l�li

FjM�n�ai�n�
a�n� dO�n� ÿ d�t�d4M

4p
��������������
ecijx ixk

p �12�

where y � tÿ x � n=li and ecik are the cofactors of the dielectric tensor eij. It is also important to note
that the above summation is valid over distinct roots li only (non-repeated eigenvalues). The three real
positive roots, that are present in eqns (11) and (12), represent the velocities of three plane waves
propagating in the same direction with di�erent velocities. The polarizations of the three plane waves
are always mutually orthogonal since B is symmetric. The displacement vector v is generally not parallel
or perpendicular to n. Therefore, there are in most of the cases two quasi-transverse (qT ) waves and one
quasi-longitudinal (qL ) wave (which is the fastest one). Making use of

X3
i�1

res
n
lNÿ1ij �n, l�

o
l�li
� 1=r

and some symmetries (which allow to write the results in terms of the positive li) one obtains for eqn
(11) a similar expression to that of Burridge (1967),

UiM�x, t� � ÿH�t�
8p2r

X3
i�1

�
jnj�1

A�i��n� 
 A�i��n�
li�n� d 0

ÿ
li�n�tÿ n � x�F�n� dO�n� �13�

where d 0�li�n�tÿ n � x� � lÿ2i @d�y�=@ t for li > 0. The factor L�i �ij � A
�i �
i A
�i �
j (see Every and Kim, 1994), to

be seen as the weighting for each plane wave contributing to Uij�x, t�, depends on the projection of the
polarization vector of that wave on the sensing and forcing directions.

The fundamental solution presented in eqns (11) and (12) can be transduced into an alternative form,
which is computationally more attractive. Using the concept of the slowness surfaces, the 2D integrals
can be reduced to a simple line integral.

The slowness surface for a certain material is determined by a vector s � n=li�n�, which has the same
direction of the normal vector n but the inverse magnitude of the phase velocity l of a plane wave
moving in the n-direction. A representation of this surface can be achieved by using the secular equation
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and noting that det N�n, l� � l6 det N�s, 1�; one can express the surface as

Q�s� � det N�s, 1� � 0: �14�

For anisotropic materials, this surface is composed of three distinct sheets (see Fig. 2) whereas for
isotropic materials two sheets coincide. In order to write the fundamental solution in terms of the
slowness surface, the following coordinate system transformation is used

dOOO�n� � js � rQj
jsj3jrQj dS�s� �15�

where dS�s� is the element of area of the slowness surface. Using eqn (15), expressions (11) and (12)
result in

UiM�x, t� � H�t�
4p2

@

@t

�
Q�0

sgn�s � rQ�
jrQj Pij�s�FjMd�tÿ x � s� dS�s� �16�

U4M�x, t� � H�t�
4p2

@

@t

�
Q�0

sgn�s � rQ�
a�s�jrQj Pij�s�FjMai�s�d�tÿ x � s� dS�s� ÿ d�t�d4M

4p
���������������
ecikx ixk

p �17�

where P�s� � Na�s, 1� (adjoint matrix of N) and sgn is the signum function. The only s-space points
which contribute to the surface integrations in eqns (16) and (17) are those formed from the intersection
of the slowness surface and the plane t � x � s moving in the x-direction. This locus of intersection
points is here represented by the line l�x, t� (see Fig. 2). After some mathematical manipulations, one
obtains the ®nal representation for the fundamental solution like

UiM�x, t� � H�t�
4p2

@

@t

�
l�x, t�

M��iM�s� dl�s� �18�

U4M�x, t� � H�t�
4p2

@

@t

�
l�x, t�

M��iM�s�ai�s�
a�s� dl�s� ÿ d�t�d4M

4p
���������������
ecikx ixk

p �19�

with

M��iM�s� �
sgn�s � rQ�Pij�s�FjM�������������������������������������������
jxj2jrQj2 ÿ �x � rQ�2

q : �20�

One advantageous characteristic of eqns (18) and (19) is that the delta distribution does not appear in
the fundamental solution. Moreover, when the vector rQ�s� (whose direction is normal to the slowness
surface) for s 2 l�x, t� is parallel to x, the fundamental solution presents a singularity (for details, see
Section 5). It is also important to observe that for double points, i.e., when two sheets of the slowness
surface meet (mathematically fQ�s� � 0, rQ�s� � 0g), the integrands in eqns (18) and (19) become
indeterminate. For double points present at the analysed transversely isotropic materials (the poles of
the two most external slowness sheets) a simple L'Hospital rule can be applied to remove the
indetermination M��iM�s�=0/0.
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3. The Green's tensor for the crystal class 6 mm

The previous results are now specialized for a special class of transversely isotropic piezoelectric
materials, namely the class 6 mm. This is an important piezo-material class, since it includes, e.g., poled
piezoceramics like BaTiO3, PZT-4, PZT-6B, and other piezocrystals like ZnO.

The adjoint matrix Na�n, l� and the operator Q � det N�n, l�, which compose the inverse matrix
Nÿ1�n, l� � Na�n, l�=det N�n, l� in eqn (11), can be written for the class 6 mm like

Na �

��������
D� n21G n1n2G ÿEJn1n3
n1n2G D� n22G ÿEJn2n3
ÿEJn1n3 ÿEJn2n3 EK

�������� �21�

with the operators G, J, K and Q,

G�n1, n2, n3, l� �
�
�c13 � c44 �2ÿ1

2
�c11 � c12 �c33

� 2�c13 � c44 ��e15 � e31 �ep ÿ �e15 � e31 �2c33n23
ee

�
n23

ÿ
�
1

2
�c11 � c12 �c44 � �e15 � e31 �2c44n23

ee

�ÿ
n21 � n22

�ÿ 1

2

�c11 � c12 �e2p
ee

�
�
1

2
�c11 � c12 � � �e15 � e31 �2n23

ee

�
rl2

�22�

J�n1, n2, n3 � � �c13 � c44 � � �e15 � e31 �epee �23�

K�n1, n2, n3, l� � c44n
2
3 �

�
c11 � �e15 � e31�2n23

ee

�ÿ
n21 � n22

�ÿ rl2 �24�

Q�n1, n2, n3, l� � ED � ÿ
�
c44n

2
3 �

1

2
�c11 ÿ c12�

ÿ
n21 � n22

�
ÿ rl2

��
c44c33n

4
3

� �c244 � c11c33 ÿ �c13 � c44 �2
	
n23
ÿ
n21 � n22

�� c44c11
ÿ
n21 � n22

�2
� ÿc44ÿn21 � n22

�� c33n
2
3

� �e15 � e31 �2
ÿ
n21 � n22

�
n23

ee

ÿ 2�c13 � c44 ��e15 � e31 �ep
ÿ
n21 � n22

�
n23

ee
� ÿc44n23 � c11

ÿ
n21 � n22

��e2p
ee

ÿ ��c33 � c44 �n23 � �c11 � c44�
ÿ
n21 � n22

�	
rl2 ÿ �e15 � e31 �2

ÿ
n21 � n22

�
n23 � e2p

ee
rl2 � r2l4

�
�25�

with ep � e15�n21 � n22� � e33n
2
3 and ee � e11�n21 � n22� � e33n23. The operator Q�n, l� can be factored like in

the case of transversely isotropy Payton (1983) into a product of a second degree operator E and a
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fourth degree operator D�n, ÿ V � � Ap�n� ÿ V 2Bp�n� � V 4 in V. Where V � r1=2l and Ap�n�, Bp�n�
can easily be obtained from eqn (25).

Now, similar to Payton's analysis (see Payton, 1983), it holds

sgn� ÿ s � rD� � ÿ4ApR
4 � 2BpR

2 � 2Ap

�
1

Ap
ÿ R4

�
�26�

resulting sgn�ÿs � rD� � �1 on SI and sgn�ÿs � rD� � ÿ1 on SII, where s21 � s22 � R2 sin2 y,
s23 � R2 cos2 y and R�y� satisfying D�s, ÿ 1� � 0. Hence, the elastodynamic tensor for the class 6 mm
may be written as

U11�x, y, z, t� � ÿH�t�
4p2

@

@t

�
Q�0

sgn�s � rQ�ÿD�s� � s21G�s�
�

jrQj d�tÿ x � s� dS�s� �27�

U12�x, y, z, t� � ÿH�t�
4p2

@

@t

�
Q�0

sgn�s � rQ�s1s2G�s�
jrQj d�tÿ x � s� dS�s� �28�

U13�x, y, z, t� � ÿH�t�
4p2

@

@t

�
SI

s1s3J�sI �
jrDj d�tÿ x � sI � dSI � H�t�

4p2
@

@t

�
SII

s1s3J�sII �
jrDj d�tÿ x � sII � dSII �29�

U33�x, y, z, t� � H�t�
4p2

@

@ t

�
SI

K�sI �
jrDj d�tÿ x � sI � dSI ÿ H�t�

4p2
@

@ t

�
SII

K�sII �
jrDj d�tÿ x � sII � dSII: �30�

The above four components are su�cient to represent the tensor Uii since the following sym-
metries U21�x, y, z, t� � U12�x, y, z, t�,U22�x, y, z, t� � U11�y, x, z, t�,U23�x, y, z, t� � U13�y, x, z, t� and
U32�x, y, z, t� � U23�x, y, z, t� are valid for hexagonal materials.

4. Characteristic surfaces

Three characteristic surfaces are used to analyse the elastic wave propagation in anisotropic solids.
Each surface in turn is composed of three distinct sheets.

The ®rst surface is the velocity surface, which is traced out as the normal n in the vector v � ln with
the amplitude of the phase velocity l, takes all possible plane wave propagation directions. This surface
has generally one quasi-longitudinal sheet (qL ) and 2 quasi-transversal sheets (qT ). Usually, the qL
sheet contains both qT sheets as the qL waves are faster than the other two.

The second surface is the already de®ned slowness surface. The qL sheet, which now is the innermost
one, is always convex (Du�, 1960) when the piezoelectric coupling is absent.

On the other hand, when piezoelectricity exists, the innermost sheet qL may present concavities. This
fact was illustrated by Every and McCurdy (1987) and Every and Neiman (1992). Considering
piezoelectric solids and a quasi-electrostatic approximation, the slowness surface is now of degree 8
instead of 6 when piezoelectricity is absent. Rochelle salt (orthorhombic, crystal class 222) and
Ba2NaNb5O15 (class mm 2) are two examples of piezoelectric materials with non-convex innermost
slowness surfaces.

As a result of a possible non-convexity of the innermost sheet of the slowness surface, the qL mode
can give rise to caustics (i.e., temporal singularities).

The last surface is known as the wave front surface. The latter contains a front of three sheets emitted
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by a point source at the origin and at time t � 0. According to the wave construction method of
Huyghens (see Payton, 1983), the general form of the wave front surface at a subsequent time t is given
by the envelope of plane fronts which passed through the origin at t � 0. The reader is referred to
Musgrave (1970) for a complete description of these surfaces.

The slowness surface furnishes a powerful projective relationship to the wave front surface, which
in¯uences the form of the singularities of the fundamental solution. Therefore, some projective
correspondences between the slowness S and wave surfaces W will be presented. The case here
illustrated shows typical features found on transversely isotropic materials. For such materials, one of
the sheets corresponds to a pure transversely polarized mode, T. This sheet, which is not a�ected by the
piezoelectric coupling, is convex, whereas the remaining qT and qL sheets can be non-convex.
Furthermore, the characteristic surfaces are obtained by rotating the symmetry plane x1, x3 around the
symmetry axis x3.

The points at the slowness surface are classi®ed as elliptic, parabolic or hyperbolic depending on the
principal curvatures l and n of the slowness surface (Payton, 1983). Points Q1 in S with a common
tangent plane P1 (in [0, 0, 1]) map onto a conical point p1 in W on the x3 axis. Parabolic points Q
correspond to cusp points p in W. Finally, points like QII with common tangent plane PII give rise to
double points pII in W.

5. Singularities of the fundamental solution

An important contribution to the understanding of the propagation mechanism of elastic waves in an
anisotropic medium (and consequently the singularities of the fundamental solution) owes to Du�
(1960). He made use of the slowness and the wave surfaces to obtain a solution for the Cauchy
problem, considering the general theory of hyperbolic di�erential equations. In his work, Du� describes
the solution as a sum of a sharp wave, on each sheet of the wave surface, and a continuous wave in the
regions between the outer and innermost wave surface. The innermost region of the wave front surface
is a `lacuna' (or gap) and there is no propagation of waves behind the last sheet of the wave surface,
con®rming the Huyghens Principle (i.e., the clean cut wave propagation in one or three space
dimensions). So, the fundamental solution will always terminate with a sharp wave. The continuous
wave, on the other hand, can arrive before the ®rst sharp wave when the outermost sheet of the wave
surface is non-convex.

Du� (1977) and Burridge (1967) have obtained asymptotic results of the Herglotz±Petrowski formula
valid near the wavefront for anisotropic elastic waves. Du� (1977) analysed the asymptotic behaviour of
the Herglotz±Petrowski formulas for higher order hyperbolic equations, revealing the straightforward
relation between the slowness and wave front surfaces. Using expressions similar to eqns (16) and (17),
Du� describes that, as t increases, the plane t � x � s moves away from the origin and an instant t 0, at
which it is tangent to a slowness sheet Si, is the moment at which the corresponding wave sheet Wi

reaches the point x. As t4 t 0, the intersection of the variable plane with S shrinks to a point and
disappears. Thus, the singularity on a sheet Wi (except for the case of a conical point in Wi) is
contributed by a small patch of Si where n, the outward normal to the sheet Si, is parallel to x.

Following the ideas from Du� (1960), Burridge (1967) and later Khutoryansky and Sosa (1995b) have
separated the singular and regular (in time) parts of the fundamental solution:

U�x, t� � Ud�x, t� � UR�x, t�, �31�

where the term UR is a continuous function bounded in time. So, the singularities or jumps in the
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solution are described exclusively by the ®rst term in eqn (31) that represents the sharp waves on W or
the corresponding asymptotic Herglotz±Petrowski formulas on S.

The singularities on the wave front surface can have di�erent forms depending on the classi®cation of
the corresponding point (or points) on the slowness surface and whether the point lies on a symmetry
direction or not.

In view of the numerical examples, the presented singularities refer to a concentrated point force with
Heaviside step function dependence rather than a Dirac Delta one (which can be achieved simply
deriving the presented results with respect to time). A detailed description of the following singularities,
which may occur in the case of transversely isotropic materials, can be found in Payton (1983), Burridge
(1967) and Every and Kim (1994).

5.1. Elliptic points on the slowness surface

When both principal curvatures l and n are of the same sign, the slowness surface is elliptic meaning
that it is either convex or concave. Supposing that the vanishing cycle on Si corresponding to the space
vector x has coordinates s1, s2, s3 with origin at a point s0 on the slowness sheet. Moreover, considering
the s3 axis parallel to x and letting the s1 and s2 axes be along lines of principal curvature at s0, the
equation for the area Si surrounding s0 can be assumed as

s3 � ÿas21 ÿ bs22 �32�

where a � l=2 and b � n=2. The element of area is dS � ds1 ds2. Then, on S, x � s � x � s0 � jxjs3 � x � s0
ÿ as21 ÿ bs22. The singular part of eqn (16), for example, derives from an integral of the form

Ud
iM�x, t�js00ÿ

�
M�s�d

ÿ
T� �as21 � bs22

�jxj� ds1 ds2 �33�

where T � tÿ x � s0 and M�s� � �sgn�s � rQ�Pij�s�FjM�s��=�4p2jrQj�. The integration of the form present
in eqn (33) has been evaluated (Payton, 1983; Every and Kim, 1994) resulting in

Ud
iM�x, t�js00ÿ

M�s0 �p������
ab

p jxjH
�3T� �34�

where the argument in the Heaviside function is ÿT for a, b > 0 and �T for a, b < 0. The term K � 4ab
is known as the Gaussian curvature of the slowness surface and is invariant with respect to axes of
reference. As it can be seen, the discontinuity is a far-®eld e�ect decaying with the distance from the
source like jxjÿ1.

5.2. Hyperbolic points on the slowness surface

If one of the principal curvatures, e.g., l is negative and the other one is positive, the slowness surface
is saddle-shaped at s0 and called hyperbolic. Following Payton (1983) or Every and Kim (1994) at that
point, near T � 0, the solution presents a logarithmic divergence like

Ud
iM�x, t�js00

M�s0 ����������ÿabp jxj ln�jTj�: �35�
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5.3. Parabolic points on the slowness surface

Parabolic points on the slowness surface correspond to points where the Gaussian curvature is zero.
These points map onto cuspidal edges (folds) in the wave surface. As noted by Every and Kim (1994)
(see Fig. 1), on the inside of the fold there are two closely spaced wave fronts corresponding to points sa
and sb on either side of the parabolic line where the slowness surface is saddle-shaped and convex (or
concave). As the fold is approached, the Gaussian curvature at sa and sb tends to zero and the
magnitude of the discontinuity and logarithmic divergence increase as they progressively get closer in
time. At the cuspidal edge, these coalesce and give rise to a higher order singularity. Supposing n � 0
and l > 0, the approximation for the slowness surface must be carried to cubic terms in s2 so that
s3 � ÿ�as21 � gs32� � � � �, with g positive. Following a similar procedure to that outlined in eqn (33), one
obtains the divergence

Ud
iM�x, t�js00ÿ

M�s0�g
ÿ
sgn�T��

a1=2g1=3jxj5=6jTj1=6 , �36�

where g��� � 2:429 and g�ÿ� � 4:206. Eqn (36) represents a 1=jTj1=6 divergence falling o� with a 1=jxj5=6
dependence on the distance.

5.4. Conical point in the wave surface

As already seen in Fig. 1, the wave surface of transversely isotropic solids may have a conical point
along the principal symmetry axis. Then, the tangent plane t � x � s touches the qT slowness sheet along
a closed curve. The behaviour of the singularity at the conical point can be found in (Payton, 1983) as

Fig. 1. Slowness and wave curves of a transversely isotropic solid.
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Ud
iM�x, t�js001=

�����������
jTkxj

p
, T< 0 �37�

Ud
iM�x, t�js001=jxj, T > 0: �38�

5.5. Lower order singularities

Lower order singularities of the fundamental solution for anisotropic solids were ®rst observed by
Every and Kim (1994). These singularities take place when the forcing or sensing direction is
perpendicular to the polarization vector Ai�s0�, then detjLijj � 0. The case of vanishing Lij can be found
in symmetry planes of the considered medium and the case of transversely isotropic media is a good
example of how these singularities arise.

Considering s0 located in the transverse symmetry plane x1, x3 with x2 perpendicular to it, one has
Ud

12 � Ud
21 � Ud

32 � Ud
23 � 0. Moreover, for the pure transverse mode, Ai�s0� � �0, 1, 0� resulting in

L11�s0� � L33�s0� � L13�s0� � L31�s0� � 0. Then, the Ud
11, Ud

33, Ud
13, Ud

31 elastodynamic components of Ud
ij

present a lower order singularity instead of a discontinuity. Remembering that

X3
N�1

AN
i �s0�AN

j �s0� � I,

the qL and qT modes are now polarized in the symmetry plane meaning that for these modes it is
L22�s0� that takes a zero value. The corresponding Lij�s� zero terms have to be expanded in powers of s1
and s2 (the local coordinate system located at s0) in order to analyse their lower order singularities.

On planes of symmetry, the weighting factor Lij�s� can be assumed simply as Lij�s�1 as22 (where a is a
constant). Then, e.g., using eqn (16), the elastodynamic components for elliptic points can be written as

Ud
ij�x, t�js00ÿ Fa

�
s22d
ÿ
T� �as21 � bs22

�jxj� ds1 ds2: �39�

The above integral has the following evaluation:

Ud
ij�x, t�js00ÿ

Fap

2
�������
ab3

p
jxj2
jTjH�3T� �40�

with ÿT for a, b > 0 and +T for a, b< 0. At T � 0, Ud
ij displays a kink and dUd

ij=dT a discontinuity
decreasing as 1=jxj2. A procedure, similar to the one outlined here, can be applied for hyperbolic and
parabolic points. For hyperbolic points, the time derivative of Ud

ij results a lnjTj divergence whereas for
parabolic points a divergence like 1=jTj1=6 appears.

6. Numerical location of l(x, t )

Although the line integral representations in eqns (18) and (19) are formally simple, the line l�x, t� has
to be located numerically. Therefore, an e�cient numerical method to locate l�x, t� plays a decisive role
in determining the fundamental tensor UMM�x, t�. As it will be seen, a semi-analytical location of l�x, t�
is possible for transversely isotropic solids (including the piezoelectric case).

For the aforementioned class of anisotropic solids, the secular equation can be solved resulting for the
symmetry plane x1, x3 (Dieulesaint and Royer, 1980) the three following slowness curves: SI for the qL
mode, SII corresponding to the qT mode and ®nally SIII, the not piezoelectrically active pure T mode.
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SI���,II�ÿ� �
0@ 2r

G22 � G332
��������������������������������������
�G22 ÿ G33�2�4G2

23

q 1A1=2

�41�

SIII �
������������
r=G11

p
�42�

where G11 � c66n
2
1 � c44n

2
3, G22 � c11n

2
1 � c44n

2
3 � g22=e, G23 � �c13 � c44�n1n3 � �g2g3�=e, G33 � c44n

2
1

�c33n23 � g23=e, with g2 � �e15 � e31�n1n3, g3 � e15n
2
1 � e33n

2
3, e � e11n21 � e33n23, and n1 � sin y, n3 � cos y.

Rotation of these curves about the x3-axis yields the three sheets of the slowness surface. Obviously, the
operators E and D, derived in Section 3, can also be used to obtain eqns (41) and (42) (see Payton,
1983).

The line l�x, t� on a sheet Sj is de®ned over directions for which tÿ s � x � 0. The coordinates
s1, s2, s3 of a sheet can be written in terms of spherical coordinates as

s�y, f� � ÿSj sin y cos f, Sj sin y sin f, Sj cos y
� �43�

where Sj is a function of y and the symmetry plane is de®ned by s1, s3 where f � 0.
Using eqn (43), a solution in f can be found for tÿ s � x � 0 like

f1 � 2 arctan
ÿ
b=�2a��, f2 � 2 arctan

ÿ
c=�2a�� �44�

with terms a � ÿSjx1n1 � Sjx3n3 ÿ t, b � ÿ2Sjx2n1 � 2
���
d
p

, c � ÿ2Sjx2n1 ÿ 2
���
d
p

, and d � S2
j �x2

2n
2
1

Fig. 2. Slowness sheets for BaTiO3.
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� x2
1n

2
1 ÿ x2

3n
2
3� � 2Sjx3n3tÿ t2. Solutions in eqn (44) depend on the variable y. The limits of the line

l�x, t� in terms of y can be found assuming that f1 � f2, which in turn means that d � 0. The limit
values y1L and y2L (roots of the equation d � 0) have to be evaluated numerically, e.g., using a one-
dimensional root ®nding algorithm.

Nevertheless, the qT sheet in the analysed examples can be non-convex, which implies that for a
certain time t the line l�x, t� may be composed of more than a single closed curve. Payton (1983)
developed an extensive work classifying transversely isotropic materials according to the shape of the SII

curve in the symmetry plane s1, s3. In view of his ®ve possible classes (which may be applied to the
following piezoelectric examples), a straight line intercepts the curve SII at most four times so there are
maximum two closed curves that compose l�x, t�. For this case, d � 0 presents four di�erent roots
(y1 < y2 < y3 < y4) and,

l�x, t�:�f1, f2

��y1EyEy2�
[�

f1, f2

��y3EyEy4�: �45�

On the other hand, considering the operator D of degree 6 in s, a straight line might intercept, e.g.,
the sheet SII up to six times, rendering then three closed curves for l�x, t�.

7. Numerical examples

Making use of the integrated fundamental solution, some results are here presented for transversely
isotropic materials including the piezoelectric coupling.

By integrating the fundamental solution with respect to time, one obtains for eqn (18), e.g.,

UiM�x, t� � H�t�
4p2

�
l�x, t�

M��iM�s� dl�s� ÿ
H�t�
4p2

�
l1

M��iM�s� dl�s� �46�

where the second term in eqn (46) states for the static solution of the problem. For t � 0, the plane
x � s � 0 is perpendicular to jxj de®ning the line l1�x, t � 0�. The static part of eqn (46) can be also
represented using the unit sphere where now l1 is the intersection of the sphere with x � n � 0
(corresponding to the results of Chen, 1993). More recently, explicit results for the static transversely
isotropic case were obtained by Ding et al. (1996), Akamatsu and Tanuma (1997) and Dunn and
Wienecke (1996). After the plane containing l�x, t� crosses the last slowness sheet, the ®rst term in eqn
(46) vanishes and the displacements remain constant due to the static term. The calculated static values
of the numerical examples were checked with the explicit solution from Ding et al. (1996).

Another important feature of the present examples is the causality e�ect, i.e., Uii�x, t� � 0 for a time
`t' preceeding the wave front arrival at x.

For the following numerical examples, the T mode is polarized in the �010� direction, while qL and qT
are polarized in the symmetry plane.

7.1. BaTiO3

The ®rst example is the piezoceramic BaTiO3, which belongs to the class of transversely isotropic
materials and whose sheets (SI, SII, SII) are convex (see Fig. 2). Fig. 3 shows components of the
fundamental tensor Uii�x, t� when a point force is applied at (0, 0, 0) and the observer is located at the
symmetry axis (0, 0, 1). The latter is an acoustic axis, i.e., an axis along which a T wave may propagate
with any polarization. The line l�x, t� reaches SI at t111:8� 10ÿ4 s and SII, SIII at t213:6� 10ÿ4 s. For
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U33 in Fig. 3, there is a discontinuity at t1�L � 1� corresponding to a pure longitudinal mode polarized
at [0, 0, 1] and a kink at t2. For U11 � U22, there is a kink (L � 0) at t1 and a discontinuity at t2.
For Fig. 4, the observation point is now located at (1, 0, 0). l�x, t� reaches SI, SII and SIII at

t112:0� 10ÿ4 s, t213:25� 10ÿ4 s, and t313:65� 10ÿ4 s, respectively. The pure transverse mode does
not contribute to the components U33, U31, U13, U23 and U32 (e.g., U33 in Fig. 4 maintains its value after
t2). This becomes evident when specializing the Green's tensor for hexagonal crystals (see eqns (29) and
(30)).

Fig. 3. U11 and U33 for BaTiO3, x � �0, 0, 1�.

Fig. 4. U11, U22 and U33 for BaTiO3, x � �1, 0, 0�.
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7.2. Zinc

The second example is the hexagonal crystal zinc. The formulas here presented can be used to elastic
problems by simply neglecting the piezoelectric coupling. Fig. 5 shows the (010) section of the wave
surface of zinc and the propagation direction a. The qT slowness sheet is non-convex meaning that its
wave sheet is folded. Figs. 6 and 7 show the components U11 and U22 in the direction a. For U11, there
is a small discontinuity at 1 �L10�, a large discontinuity at 2 �L11�, a kink at 3 �L � 0�, a logarithmic

Fig. 5. Cross-section of the wave surface of zinc by the symmetry plane (x 1, x 3).

Fig. 6. U11 for zinc in direction a, x=(0.002, 0, 0.01).
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divergence at 4 and a discontinuity at 5. The results presented in Fig. 7 are compared to the 2D
integration over the unit sphere performed by Every and Kim (1994). For a 10ÿ9 time discretization the
computational time for this example is about 20 s on a Power PC.

7.3. Zinc oxide

The third example is the hexagonal piezocrystal zinc oxide, which has a non-convex qT slowness sheet
like zinc. Fig. 8 shows the (010) section of the wave surface for the material. The analysed direction b,
x � �0:67483, 0, 0:73797�, includes the cusp point 2. The time values for the points 1, 2, 3, and 4 are
t111:68� 10ÿ4 s, t213:06� 10ÿ4 s, t313:21� 10ÿ4 s, and t413:62� 10ÿ4 s, respectively. Fig. 9 shows
the response functions U11 and U33 for direction b along the symmetry axis. For U11 and U33, there is a
discontinuity at 1 and 3. At the cusp point 2, U33 shows a weak negative divergence �L� 1� and U11 a
large negative divergence (L11). At point 4, U11 shows a kink (L � 0) whereas U33 has no singular
behaviour for the pure transverse mode. A similar analysis can be used for the response functions
presented in Fig. 10. The crosses in Figs. 9 and 10 and points represent hereafter the calculated
analytical values of the discontinuities in the fundamental solution.

8. Numerical aspects of the implementation

In this section, some aspects of the present numerical implementation are explained in detail. The ®rst
step is the exact location of the time discontinuities, which lay on the wave surface. Using the duality of
W and S, every point s of S whose normal is parallel to the position vector x corresponds to a point on
W. Hence, the time discontinuities are obtained by t� � s � x. For a given vector x with its polar
coordinate yx, the polar coordinates yW of the points on an hexagonal sheet Sj, which correspond to Wj,
are

Fig. 7. U22 for zinc in direction a, x=(0.002, 0, 0.01).
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yW � Zeros of

8<:cos yx ÿ
Sj cos y� ÿ@Sj=@y

�
sin y�������������������������������

S2
j �

ÿ
@Sj=@y

�2q 9=;
0<y<p

: �47�

With the knowledge of the set of wave fronts t�'s for a certain x, one can restrict the numerical
evaluation of the Green's tensor between the ®rst and last wave fronts, but, of course, only when
assuming the innermost sheet of S to be convex.

Fig. 8. Cross-section of the wave surface of zinc oxide by a meridian plane.

Fig. 9. U11 and U33 for zinc oxide in direction b, x=(0.67483, 0, 0.73797).
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Another point to be examined is the numerical integration of l�x, t�. In the present implementation,
the semi-analytical location (see eqn (45)) was used, where the kernel M was integrated on l�x, t� using
quadratic elements, hence, using three nodal values for each element. In order to achieve a good
accuracy, ten Gauss points were used in the numerical integration. Fig. 11 shows a plane section on the
SII sheet of PZT-6B, where l�x, t� is discretized using four quadratic elements.

Fig. 10. U13 and U22 for zinc oxide in direction b, x=(0.67483, 0, 0.73797).

Fig. 11. Slowness sheets for PZT-6B with a plane section on SII.
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Fig. 12 shows the convergence of U11(1, 0, 0, t ) for PZT-6B versus the number of quadratic elements
used in the numerical integration. One can observe that the kernel M��11 demands a ®ne discretization to
converge to the analytical static results from Ding et al. (1996).

9. Conclusions

The formulation from Khutoryansky and Sosa (1995a, b) was implemented in the present work
rendering good numerical results for the analysed examples. The operator Q for the class 6 mm was
factored into a product of a second and a fourth degree operators, enabling a generalization of Payton's
earlier results on the Herglotz±Petrowski formulas for hexagonal materials (Payton, 1983). The
presented numerical examples con®rm the existence of singularities of various orders that travel on the
wave front outward from the point of excitation.
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